
Microservices and DevOps

DevOps and Container Technology
Testability: An Architectural Quality Attribute

Henrik Bærbak Christensen



Testability

• Testability: Concerned with the ease with which the 

software can be made to demonstrate its faults

• Thus an estimate of effort (to make test) and efficiency 

(probability of finding a failure)

CS@AU Henrik Bærbak Christensen 2



Testability

• Testability: Concerned with the ease with which the 

software can be made to demonstrate its faults

• Techniques:

– Testing:

– Review

• Manual: Structured and systematic human reading of programs

• Static analysis: let programs analyze your program

– Formal verification: make profs that you program works

CS@AU Henrik Bærbak Christensen 3



Failure and Defects

• What we observe when testing

• Why we observe it – the cause

• På dansk: Fejl og fejl ☺

CS@AU Henrik Bærbak Christensen 4



Terminology

• Test Case

• Which means:

– We have to isolate some part of the software – the ‘unit’

– We have to be able to provide input to the unit

– We have to be able to execute the unit with the input and observe 

the output (which requires a specific context)

– We have to know what output to expect (oracle)

CS@AU Henrik Bærbak Christensen 5

(input, output, unit under test)



Test Case

• Manual Testing

• Automated Testing

• Trend: Towards automated

– Netflix, Uber, MS, Google, …

CS@AU Henrik Bærbak Christensen 6



… Can be difficult!

• Because: It is difficult or tedious to provide input

– Start a web server with five dependent systems

• Ensure that the two databases used are in a correct state, 

– One is that Arne is a registered user in the user database

– Another that Arne’s current balance on his account is 200€

– Log in Arne from the web page

– Go to the account page and enter (300€, Birte) in the ‘transfer 

funds’ page.

– Validate that transfer is refused and the message is ‘out of funds’

CS@AU Henrik Bærbak Christensen 7



… Can be difficult!

• Because: It is difficult or tedious to provide input

– Start a web server with five dependent systems

• Ensure that the two databases used are in a correct state, 

– One is that Arne is a registered user in the user database

– Another that Arne’s current balance on his account is 200€

– Log in Arne from the web page

– Go to the account page and enter (300€, Birte) in the ‘transfer 

funds’ page.

– Validate that transfer is refused and the message is ‘out of funds’

CS@AU Henrik Bærbak Christensen 8

Tedious to set object’s state to well 
defined values before executing the 

test.
(And resetting is hell!)

Tedious to enter the input parameters of 
the test case.

Tedious to verify expected output match 
computed output



… Can be difficult!

• Because: Difficult to execute unit in isolation

– If unit deeply nested inside a complex system

• Impossible/difficult to isolate

• Difficult to control surrounding units

• Anti decomposition axiom:

– ”You cannot fully test a module through testing the system”

• Anti composition axiom:

– ”You cannot fully test a system through testing all units”

CS@AU Henrik Bærbak Christensen 9



… Can be difficult!

• Because: It is difficult to get the output

– If the thing we need to validate is printed in a mail that the system 

sends to a user

• Have to log in as this user, open mail box, verify contents

– If the proper answer is that the graphite rods are fully extracted 

from our nuclear core

– If the proper answer is that 250 states change in 125 different 

systems

CS@AU Henrik Bærbak Christensen 10



… Can be difficult!

• Because: Given we have the output, what is the correct 

expected output?

– Big legacy systems tend to do stuff which we knew why happens 

– a decade ago…

– And user rely on what it has always been doing, not what it was 

specified to do!

• War story: 

– use the algorithm itself to compute the answer to expect

CS@AU Henrik Bærbak Christensen 11



… Can be difficult

• Because: Any change potentially require regression 

testing!

• Let us face it:

– It is expensive so either

• Our product becomes too expensive

• We just hope for the best

• WarStory: The 1.000 hour manual test system…

CS@AU Henrik Bærbak Christensen 12



Testing Issues in Summary

• Definition: The Testability Input Issue

– Embody the issues involved in providing comprehensive and 

deterministic input to the unit under test in a reliable and 

reproducible way

• Definition: The Testability Unit Isolation Issue

– Embody the issues involved in testing a unit under test in 

isolation in a comprehensive environment in a reliable and 

reproducible way

• Definition: The Testability Output issue

– Embody the issues involved in recording the output from a unit 

under test and asserting the correctness in a reliable and 

reproducible way
CS@AU Henrik Bærbak Christensen 13



Testability Tactics



Tactic

• Tactics: Architectural techniques to achieve required 

quality attributes

– i.e. control the response measure in a positive direction

• So

– Architectural techniques to increase testability

CS@AU Henrik Bærbak Christensen 15



Testability Tactics

CS@AU Henrik Bærbak Christensen 16



Tactics

• Control/observe system state

– Specialized interfaces

• Encapsulation works against validating intermediate results

• Compare Spy’s retrieval interface

– Record/playback

• Record interaction at interface boundary for later playback

• Many web testing tools (Selenium a.o.) work this way

– Localize state storage

• To enable testing when UUT is in particular state

– Ex: Backgammon rules change at end of game, but tedious to get there if by 

moving one piece at a time

– Abstract data sources

• Make it easy to control UUTs input data

– Stubs, program to an interface and use delegation

CS@AU Henrik Bærbak Christensen 17



Tactics

• Control/observe system state

– Sandbox

• Isolate system from ‘real world’ to enable experimentation

– Isolate from production data and env

– Allow transactions to be easily rolled back 

– Use Virtualized resources / VMs

• Use stubs, mocks, dependency injection for

– Real clocks, real hardware, real sensors, real …

– Executable assertions

• Class level invariants, pre- and post-conditions

• Checked continuously at run-time

CS@AU Henrik Bærbak Christensen 18



Tactics

• Limit Complexity

– Limit structural complexity

• Make smaller and more cohesive abstractions

– High cohesion, low coupling, separation of concern

• Eventual consistency easier than always consistent

– Simpler code and easier to test

– Limit non-determinism

• Avoid non-determinism as best possible

– Stubbing randomness for instance

CS@AU Henrik Bærbak Christensen 19



Evolving World

• Also here I find a tactic missing (or a category)

CS@AU Henrik Bærbak Christensen 20

Test Process
• Automation

• RegressionSpeed
• Monitoring

‘Ease of demonstrate faults’ equals
speed!



Tactic

• Test Process Tactics

– Automation: Ensure that tests are executed 

automatically/programmatically, not by hand

• xUnit frameworks

• Continuous Integration servers on dedicated branches

– Regression Speed: Ensure your automated tests can be 

executed fast. Unit tests in seconds, integration/service tests in 

minutes, system/end-to-end tests in hours.

• Service Doubles

CS@AU Henrik Bærbak Christensen 21



Tactic

• Test Process Tactics

– Monitoring: Monitor production systems and report anomalies

• Monitor log messages

• Monitor physical server farm health

• Simian army to produce failure conditions in prod.

CS@AU Henrik Bærbak Christensen 22



Testability and MSDO

I did not sign up for a test fagpakke, did 

I?



Yes you did ☺

• DevOps Culture [Rouan Wilsenach, 2015] 

(https://www.martinfowler.com/bliki/DevOpsCulture.html)

– We need

• Fast feedback

• Quality Code

• Automation

– Main technique

• Automated regression testing

CS@AU Henrik Bærbak Christensen 24

https://www.martinfowler.com/bliki/DevOpsCulture.html


So – in General

• All features/quality attributes should be demonstrated 

through automated testing in this course

• Write JUnit code to validate at unit testing level

– Using test doubles to control indirect input and ouput

• Write JUnit+TestContainer code to validate at integration 

testing level

– Use real-life containers to handle deterministic input and output

– (And test double services or test doubles for non-determ.)

CS@AU Henrik Bærbak Christensen 25


